If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x-49=0
a = 1; b = 32; c = -49;
Δ = b2-4ac
Δ = 322-4·1·(-49)
Δ = 1220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1220}=\sqrt{4*305}=\sqrt{4}*\sqrt{305}=2\sqrt{305}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{305}}{2*1}=\frac{-32-2\sqrt{305}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{305}}{2*1}=\frac{-32+2\sqrt{305}}{2} $
| 1/2x+3/5=23/5 | | 64=x4+7 | | P(x)=-6x^2+60x-126 | | 6x+3-4x-9=10 | | 4(n+3)+2(3n+1)=18 | | 2-3(1-9x)=80 | | 4x+8+5x-3=59 | | 1/4+x/2=4 | | (1)/(4)+(x)/(2)=4 | | -50(x)=0 | | 32k^2+21k-9=0 | | a+6-17a=9 | | 11x=8=85 | | 5x-10+4x-14=180 | | 1p+5p-2p+4p=-40 | | 2x/5+x-1/3=16/4 | | a+6=17a+9 | | 1p+5p-2p+4p= | | p+5p-2p+4p= | | i-18=47 | | )27=15a-1 | | 3/4=x-3/3+x | | 4x+12=2(x-5) | | 3/4=(x-3)/(3+x) | | 8a+6,A=0.5 | | -14x-14=-28 | | x/3+x/4=4 | | 10n=6n2 | | -1=-7(t-1)-1+6t | | 5-y2=1 | | d-3.5=-2.5 | | 7z=55+1z= |